Wogonin reversed resistant human myelogenous leukemia cells via inhibiting Nrf2 signaling by Stat3/NF-κB inactivation

نویسندگان

  • Xuefen Xu
  • Xiaobo Zhang
  • Yi Zhang
  • Lin Yang
  • Yicheng Liu
  • Shaoliang Huang
  • Lu Lu
  • Lingyi Kong
  • Zhiyu Li
  • Qinglong Guo
  • Li Zhao
چکیده

Constitutive NF-E2-related factor 2 (Nrf2, NFE2L2) activation has been recently reported to play a pivotal role in enhancing cell survival and resistance to anticancer drugs in many tumors. Wogonin had strong reversal potency via reduction of Nrf2 mRNA in Adriamycin (ADR)-induced resistant human chronic myelogenous leukemia (CML) K562/A02, but the mechanism of reduction of Nrf2 mRNA was still unclear. In this study, we aimed to delineate the mechanism by which Wogonin suppressed transcription of Nrf2 in resistant CML cells and further evaluate the reversal effects of Wogonin on the established animal models. Data indicated that Wogonin suppressed transcription of Nrf2 by NF-κB inactivation. Wogonin inhibited the binding of p65 to Nrf2 by suppression of the κB-binding activity. Further research revealed the κB2 site was responsible for the decreased Nrf2 by Wogonin in resistant K562 cells. Furthermore, reduction of pY705-Stat3 was involved in inhibition of the binding of p65 to Nrf2 by Wogonin. In vivo, Wogonin potentiated the inhibitory effect of ADR on leukemia development by suppressing pY705-Stat3 and Nrf2 signaling. In summary, these results demonstrated Wogonin could combat chemoresistance effectively through inhibiting Nrf2 via Stat3/NF-κB signaling, and supported that Wogonin can be developed into an efficient natural sensitizer for resistant human myelogenous leukemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

High‐dose wogonin exacerbates DSS‐induced colitis by up‐regulating effector T cell function and inhibiting Treg cell

Wogonin exerts anti-tumour activities via multiple mechanisms. We have identified that high-dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveillance. However, wogonin (20-50 μM) ex vivo prevents inflammation by inhibiting NF-κB and Erk signa...

متن کامل

BM microenvironmental protection of CML cells from imatinib through Stat5/NF-κB signaling and reversal by Wogonin

Constitutive Stat5 activation enhanced cell survival and resistance to imatinib (IM) in chronic myelogenous leukemia (CML) cells. However, the mechanism of Stat5 activation in mediating resistance to IM in bone marrow (BM) microenvironment has not been evaluated precisely. In this study, we reported HS-5-derived conditioned medium (CM) significantly enhanced IM resistance in K562 and KU812. Int...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017